Type II cAMP-dependent protein kinase-deficient Drosophila are viable but show developmental, circadian, and drug response phenotypes.

نویسندگان

  • S K Park
  • S A Sedore
  • C Cronmiller
  • J Hirsh
چکیده

We identified a unique type II cAMP-dependent protein kinase regulatory subunit (PKA-RII) gene in Drosophila melanogaster and a severely hypomorphic if not null mutation, pka-RII(EP(2)2162). Extracts from pka- RII(EP(2)2162) flies selectively lack RII-specific autophosphorylation activity and show significantly reduced cAMP binding activity, attributable to the loss of functional PKA-RII. pka-RII(EP(2)2162) shows 2-fold increased basal PKA activity and approximately 40% of normal cAMP-inducible PKA activity. pka-RII(EP(2)2162) is fully viable but displays abnormalities of ovarian development and multiple behavioral phenotypes including arrhythmic circadian locomotor activity, decreased sensitivity to ethanol and cocaine, and a lack of sensitization to repeated cocaine exposures. These findings implicate type II PKA activity in these processes in Drosophila and imply a common role for PKA signaling in regulating responsiveness to cocaine and alcohol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE EFFECT OF THEOPHYLLINE ON THE KINETICS OF cAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT, cAMP, PROTEIN KINASE INHIBITOR AND THEIR RELATIONSHIP IN LUNG TISSUE

We have investigated the effect of theophylline on the kinetics of the catalytic subunit of protein kinase and related factors in lung tissue. The results show that the point of highest concentration of the C subunit of protein kinase which is active in casein phosphorylation is at 3h of incubation time, but in the presence of 100 Ilg/ InL and 10µg/mL theophylline, this is shifted to I.S an...

متن کامل

Drosophila melanogaster deficient in protein kinase A manifests behavior-specific arrhythmia but normal clock function.

Drosophila melanogaster bearing mutations in the DCO gene, which encodes the major catalytic subunit of cAMP-dependent protein kinase (PKA), displays arrhythmic locomotor activity strongly suggesting a role for PKA in the circadian timing system. This arrhythmicity might result from a requirement for PKA activity in photic resetting pathways, the timekeeping mechanism itself, or downstream effe...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Phosphorylation of conserved casein kinase sites regulates cAMP-response element-binding protein DNA binding in Drosophila.

The Drosophila homolog of cAMP-response element-binding protein (CREB), dCREB2, exists with serine 231, equivalent to mammalian serine 133, in a predominantly phosphorylated state. Thus, unlike the mammalian protein, the primary regulation of dCREB2 may occur at a different step from serine 231 phosphorylation. Although bacterially expressed dCREB2 bound cAMP-response element sites, protein fro...

متن کامل

PDF and cAMP enhance PER stability in Drosophila clock neurons.

The neuropeptide PDF is important for Drosophila circadian rhythms: pdf(01) (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light-dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 27  شماره 

صفحات  -

تاریخ انتشار 2000